Bounds on DM interpretation of Fermi-LAT GeV excess

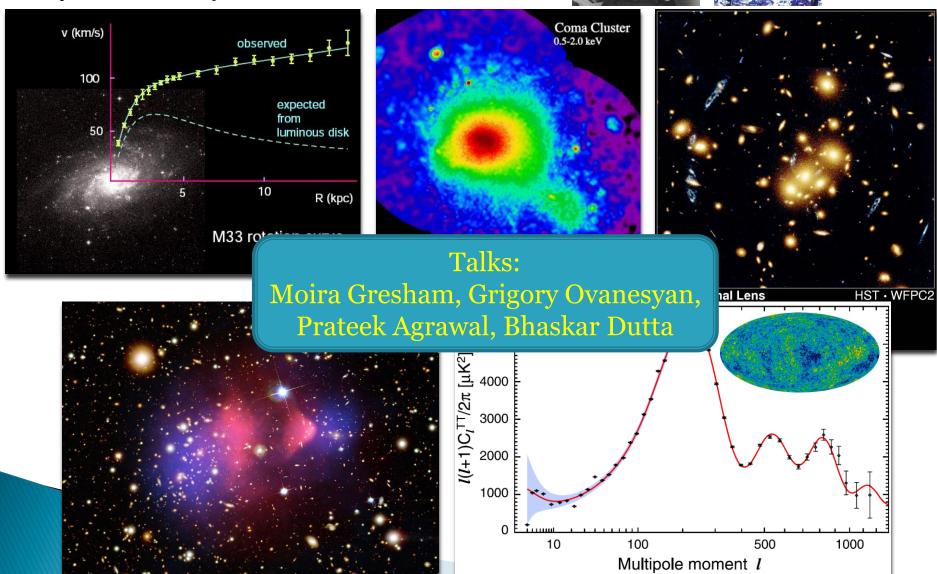
KC Kong and **J-CP** [arXiv: 1404.3741]

Jong-Chul Park

July 02, 2014

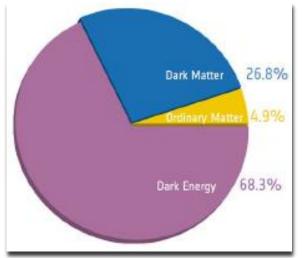
Higgs is discovered! What is the next?

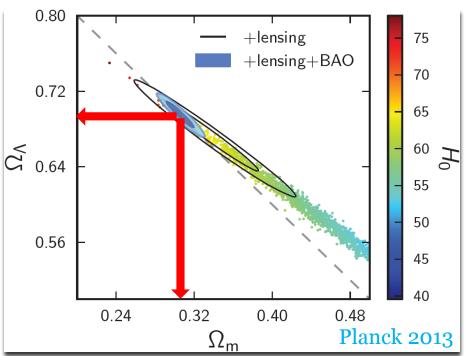
Dark Matter?!



Dark matter

* discovered via gravity


by Fritz Zwicky (1933) & Vera Rubin (1970)

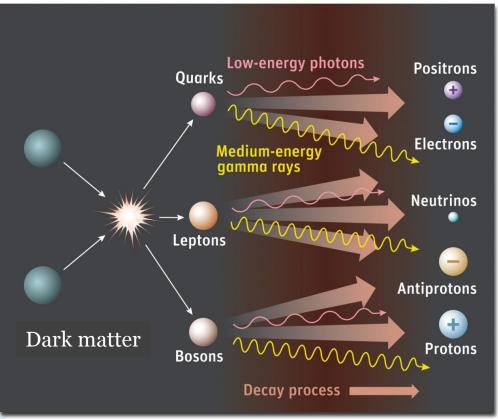


And ...

❖ DM accounts for 1/4 of the mass-E of the Universe.

* For the particle identification, a discovery via EM, strong or weak probes is needed: e.g. DM direct detection, production, etc.

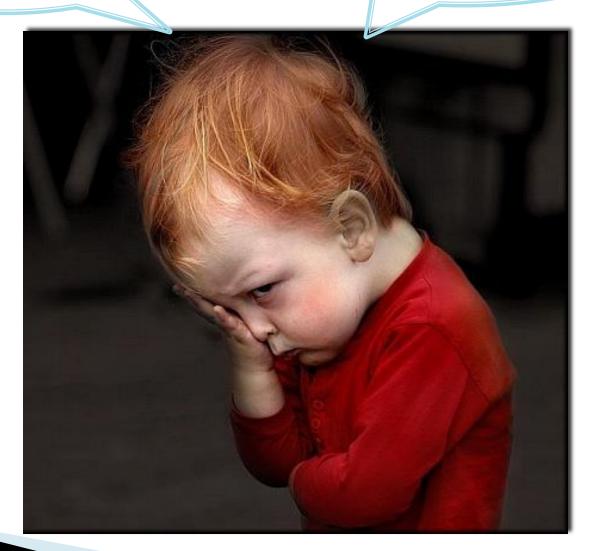
Outline


- > DM indirect searches
 - \rightarrow GeV γ -rays from the Galactic center
- > Constraints:
 - ✓ Indirect detections
 - ✓ Direct detections
 - ✓ Colliders
- > Conclusion

Outline

- > DM indirect searches
 - \rightarrow GeV γ -rays from the Galactic center
- > Constraints:
 - ✓ Indirect detections
 - ✓ Direct detections
 - ✓ Colliders
- > Conclusion

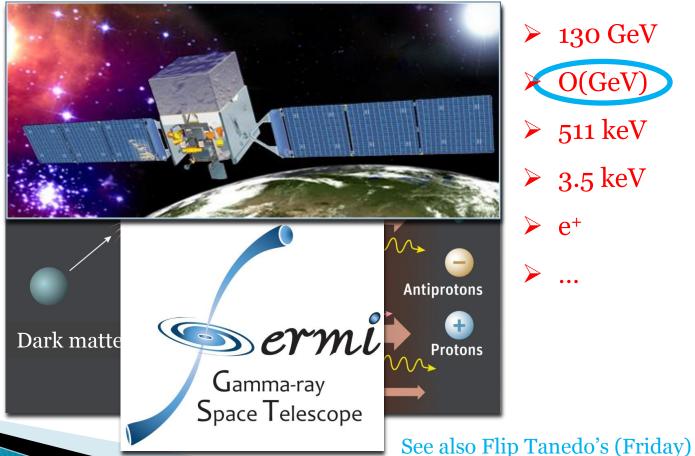
Indirect detection


- ❖ Indirect detection experiments search for the products of DM annihilation or decay: gamma rays, neutrinos, positrons, and antiprotons
- ❖ Not conclusive evidence since the backgrounds from other sources are not fully understood.

- > 130 GeV
- > O(GeV)
- > 511 keV
- > 3.5 keV
- > e+
- **>** ...

DM signals?

Um... Well...



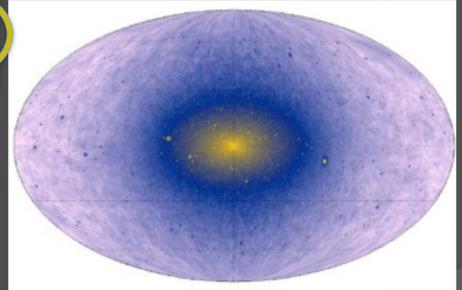
Indirect detection

❖ Indirect detection experiments search for the products of DM annihilation or decay: gamma rays, peutrinos, positrons or antiprotons

❖ Not conclusive evidence since the backgrounds from other sources are not

fully understood.

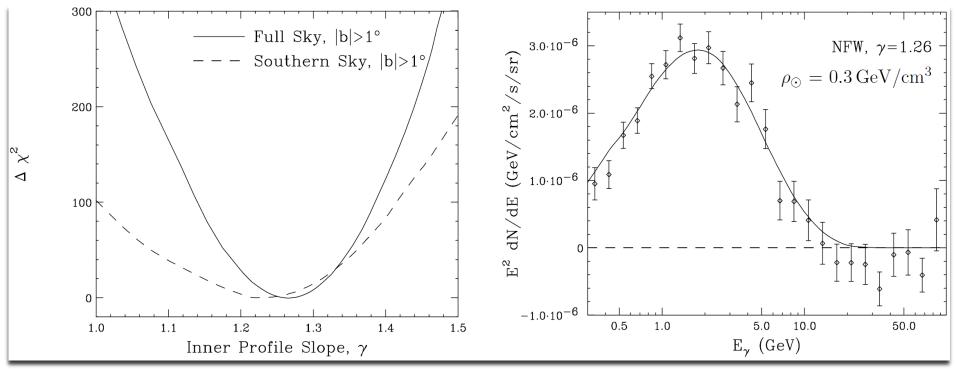
History of Fermi-LAT GeV excess


- * L. Goodenough & D. Hooper, arXiv:0910.2998 (1 year)
- * D. Hooper & L. Goodenough, arXiv:1010.2752 (2 year)
- * D. Hooper & T. Linden, arXiv:1110.0006
- 000eron * K. Abazanjian & M. Kapl
- * D. Hooper & T
- * C. Gordon & O. 500.5725
- ❖ W. Huang, A. Urbano & W. Xue, arXiv:1307.6862
- * K. Abazanjian, N. Canac, S. Horiuchi & M. Kaplinghat, arXiv:1402.4090
- * T. Daylan, D. Finkbeiner, D. Hooper et al., arXiv:1402.6703

The Signal: Gamma Rays from Dark Matter

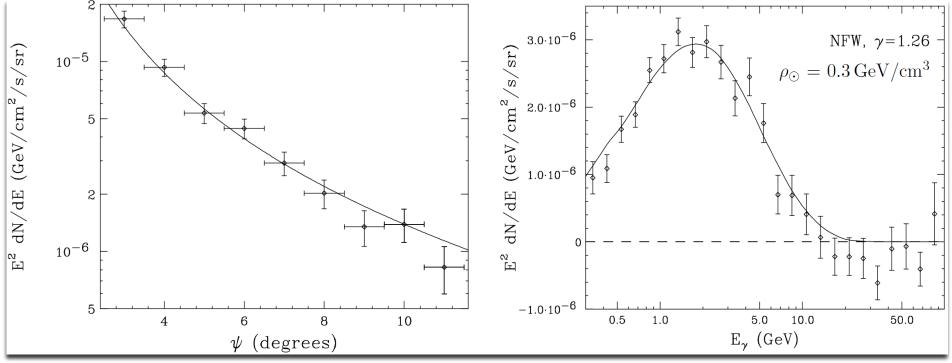
The gamma-ray signal from dark matter annihilations is described by:

$$\Phi_{\gamma}(E_{\gamma}, \psi) = \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \frac{\langle \sigma v \rangle}{8\pi m_{X}^{2}} \int_{\mathrm{los}} \rho^{2}(r) \mathrm{d}l$$


- 1) Distinctive "bump-like" spectrum
- 2) Normalization of the signal is bet by the dark matter's mass and annihilation cross section (in the low-velocity limit
- 3) Signal concentrated around the Galactic Center (but not point-like) with approximate spherical symmetry; precise morphology determined by the dark matter distribution

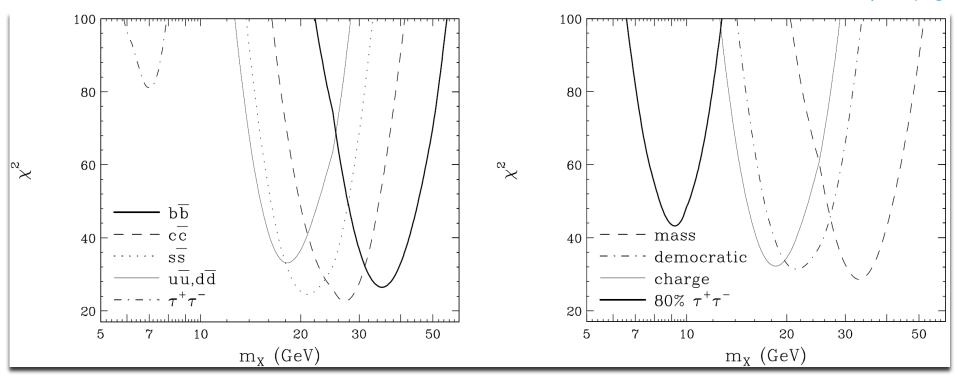
M. Kuhlen et al.

Features of GeV excess I


arXiv:1402.6703

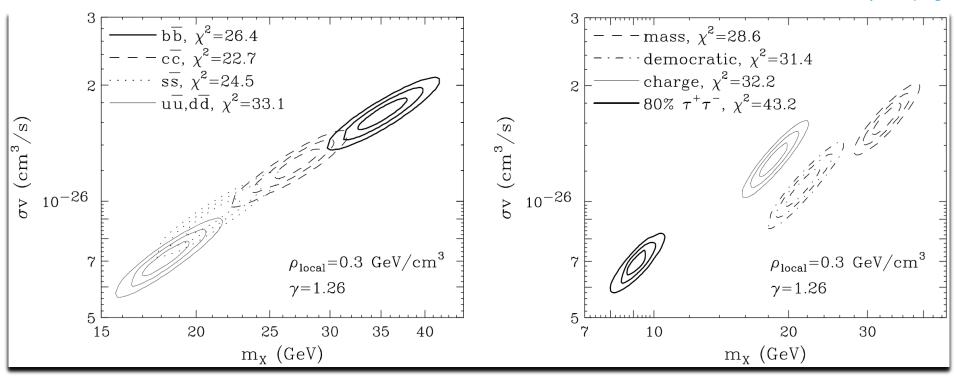
- ❖ The excess is distributed around the GC with a flux falling off as ~r^{-2.5}.
- ❖ The spectrum of the excess peaks at 1-3 GeV.

Features of GeV excess I

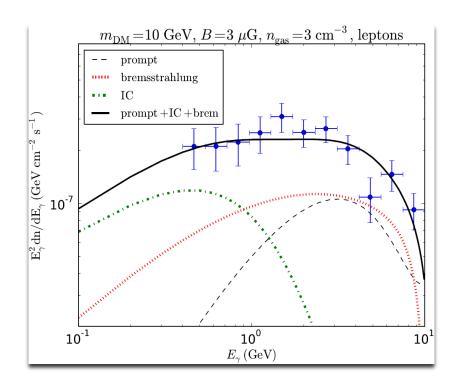

arXiv:1402.6703

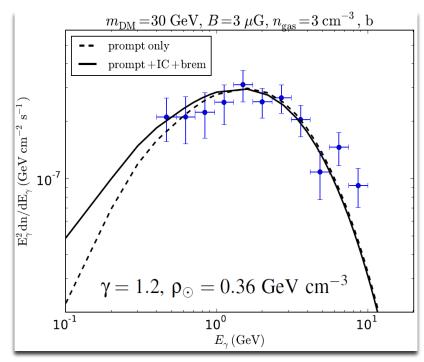
- ❖ The excess is distributed around the GC with a flux falling off as $\sim r^{-2.5}$.
- ❖ The spectrum of the excess peaks at 1-3 GeV.
- ❖ Signal is extended to > 10° from the GC → disfavor millisecond pulsars
- Consistent with the dynamical center of the Milky Way

Features of GeV excess II


arXiv:1402.6703

❖ The spectrum is in good agreement with the predictions from 20-40 GeV
DM annihilating to mostly quarks.


Features of GeV excess II


arXiv:1402.6703

- The spectrum is in good agreement with the predictions from 20-40 GeV DM annihilating to mostly quarks.
- ❖ Required cross section is ~1-2 · 10⁻²⁶ cm³/s

Features of GeV excess III

- * T. Lacroix, C. Boehm & J. Silk (arXiv:1403.1987) point out that a contribution of the diffuse γ from primary and secondary e's is significant, especially for leptons.
- ❖ With the IC and Bremsstrahlung contributions, ~10 GeV DM annihilating into leptons provide a little better or similar fit to the pure b-quark state.

Summary of GeV excess

- ❖ Leptons: poor fit ← w/o IC & electron diffusion for Bremsstrahlung
- * Quark final states: $\langle \sigma v \rangle_{qq} = (1-2) \cdot 10^{-26} \text{ cm}^3/\text{s for m}_{DM} = 20-40 \text{ GeV}$ depending on quarks.
- ❖ DM > millisecond pulsars ← signal is extended to > 10° from the GC

arXiv:1402.6703

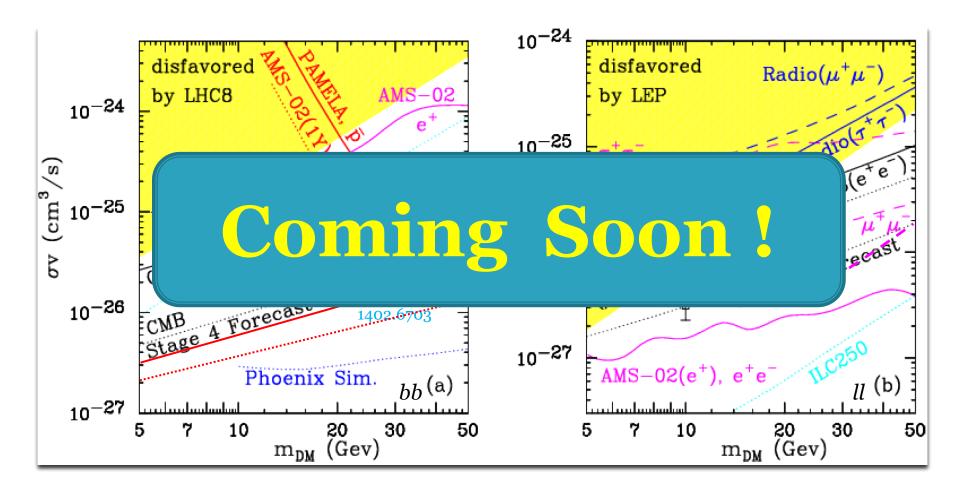
- * Pure leptons (e: μ : τ =1:1:1): $\langle \sigma v \rangle_{ll}$ =0.86 · 10⁻²⁶ cm³/s for m_{DM}=10 GeV
- * Pure b-quarks: $<\sigma v>_{bb}=2.03 \cdot 10^{-26} \text{ cm}^3/\text{s for m}_{DM}=30 \text{ GeV}$ cf. w/o diffusion & IC, $<\sigma v>_{bb}=2.2 \cdot 10^{-26} \text{ cm}^3/\text{s}$
- Diffusion model induces an additional uncertainty (MIN, MED, MAX)
 - \rightarrow $<\sigma v>_{ll}=(0.68-1.18)\cdot 10^{-26} \text{ cm}^3/\text{s}$

arXiv:1403.1987

DM models for GeV excess

- ❖ GeV excess & direct detection signals: B. Kyae & JCP (1310.2284)
- * Flavored DM: C. Boehm, **Matthew Dolan** et al. (1401.6458),

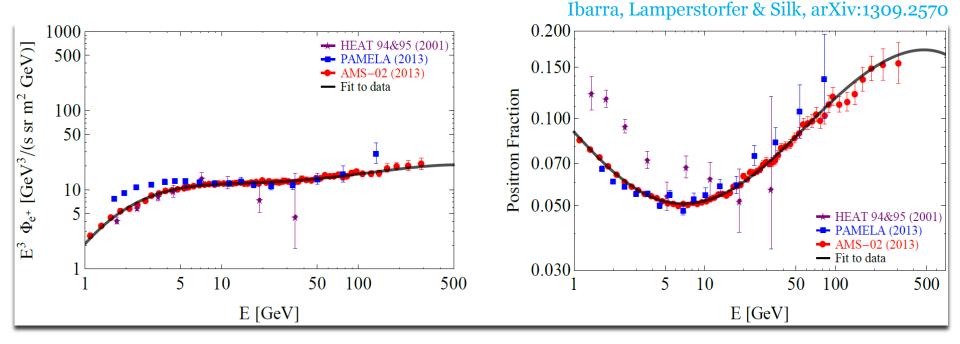
Prateek Agrawal, B. Batell, D. Hooper & Tongyan Lin (1404.1373), ...


- Effective Ops.: W. Huang, A. Urbano & W. Xue (1310.7609)
 - A. Alves, S. Profumo, F. Queiroz & W. Shepherd (1403.5027),
 - A. Berlin, D. Hooper & S. McDermott (1404.0022),
 - E. Izaguirre, G. Krnjaic & B. Shuve (1404.2018), ...
- Cascade annihilation: C. Boehm, Matthew Dolan & C. McCabe (1404.4977),
- P. Ko, W. Park & Y. Tang (1404.5257), **Arvind Rajaraman** & **Philip Tanedo** et al. (1404.6528), A. Martin, J. Shelton & J. Unwin (1405.0272), ...

***** ...

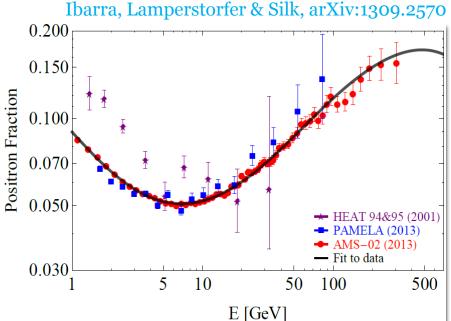
Outline

- > DM indirect searches
 - \rightarrow GeV γ -rays from the Galactic center
- > Constraints:
 - ✓ Indirect detections
 - ✓ Direct detections
 - ✓ Colliders
- > Conclusion


The goal!

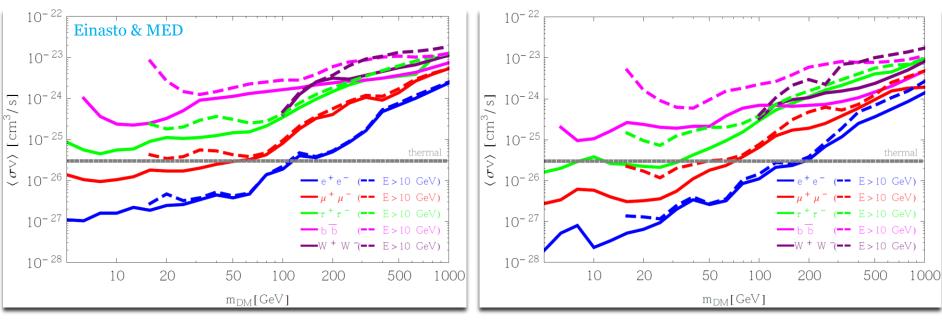
Outline

- > DM indirect searches
 - \rightarrow GeV γ -rays from the Galactic center
- > Constraints:
 - ✓ Indirect detections
 - ✓ Direct detections
 - ✓ Colliders
- > Conclusion


Indirect detection: e+ I

- ❖ Precise measurements of cosmic e⁺ by AMS-02 → constraints on DM
- * Reasonable BG model considering a possible primary astrophysical origin
- * Total interstellar e⁺ flux: $\Phi_{e^+}^{\mathrm{IS}}(E) = \Phi_{e^+}^{\mathrm{sec,IS}}(E) + \Phi_{e^+}^{\mathrm{source,IS}}(E) + \Phi_{e^+}^{\mathrm{DM,IS}}(E)$
- ❖ χ²: pure BG model vs BG + DM annihilation

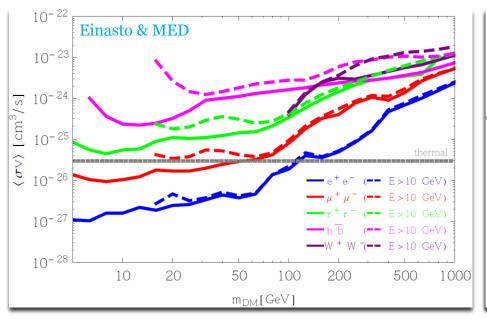
Indirect detection: e+ I

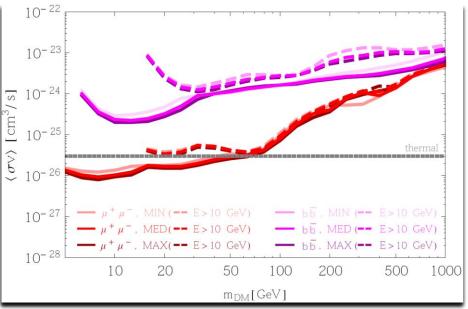


- ❖ Precise measurements of cosmic e⁺ by AMS-02 → constraints on DM
- * Reasonable BG model considering a possible primary astrophysical origin
- * Total interstellar e⁺ flux: $\Phi_{e^+}^{\mathrm{IS}}(E) = \Phi_{e^+}^{\mathrm{sec,IS}}(E) + \Phi_{e^+}^{\mathrm{source,IS}}(E) + \Phi_{e^+}^{\mathrm{DM,IS}}(E)$
- ❖ χ²: pure BG model vs BG + DM annihilation

Indirect detection: e+ II

Ibarra, Lamperstorfer & Silk, arXiv:1309.2570

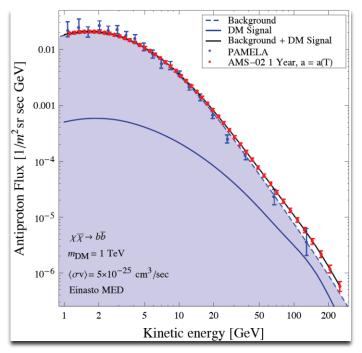



❖ Limits on <ov> from e⁺ flux (left) and fraction (right):

Those from e^+ flux are comparable or weaker, especially in low m_{DM} region.

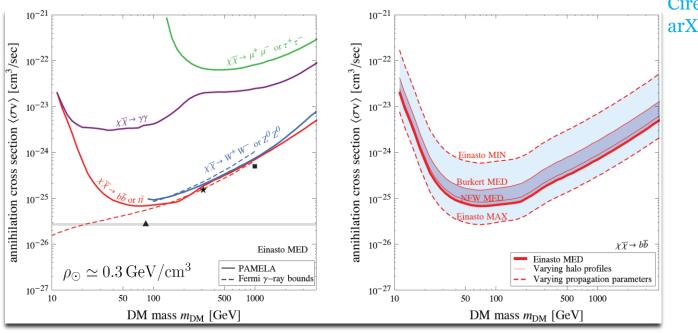
Indirect detection: e+ II

Ibarra, Lamperstorfer & Silk, arXiv:1309.2570


❖ Limits on <ov> from e⁺ flux (left) and fraction (right):

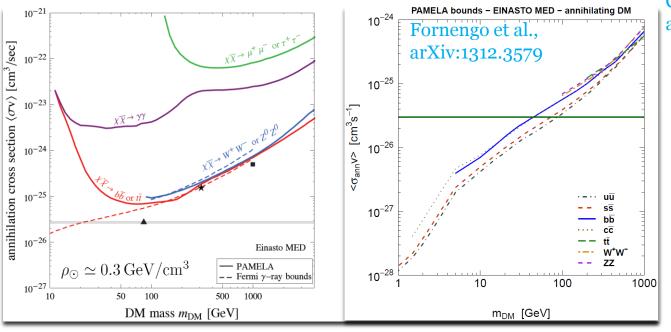
Those from e⁺ flux are comparable or weaker, especially in low m_{DM} region.

❖ MIN & MAX propagation parameter sets as well as NFW & isothermal
 profiles → limits are just mildly affected.


Indirect detection: anti-p I

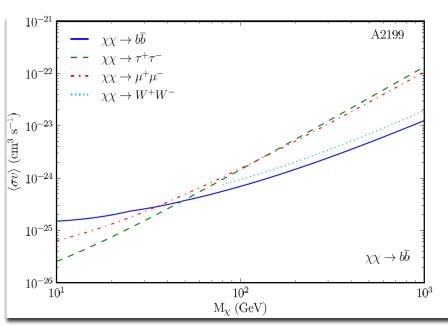
Cirelli & Giesen, arXiv:1301.7079

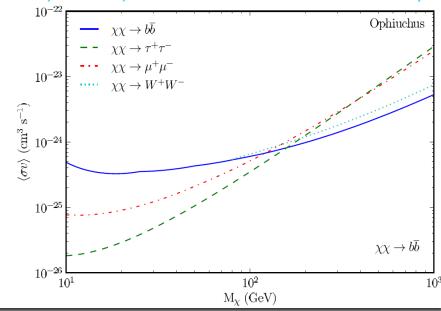
- * Anti-p is generic for hadronic or gauge boson annihilation channels.
 - → constrained by current PAMELA & upcoming AMS-02 results on anti-p
- * Astrophysical BG by cosmic-ray processes is optimized within the uncertainty to minimize the χ^2 of the total anti-p flux.


Indirect detection: anti-p II

- ❖ Constraints on <ov> from anti-p flux & astrophysical uncertainties
- ❖ Almost same for NFW, 2-3 times weaker for Burkert
- ❖ ~10 times weaker for MIN, 2-3 times stronger for MAX

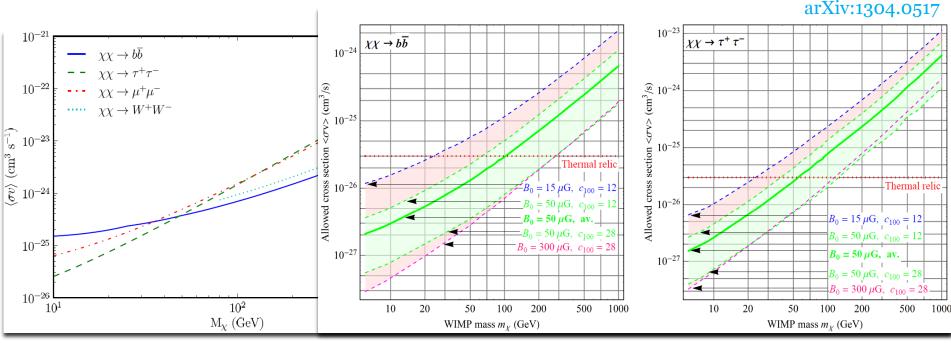
Cirelli & Giesen, arXiv:1301.7079


Indirect detection: anti-p II

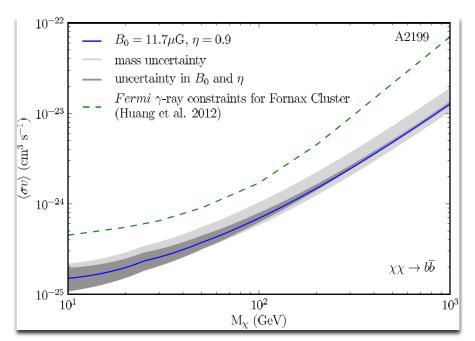

Cirelli & Giesen, arXiv:1301.7079

- ❖ Constraints on <ov> from anti-p flux & astrophysical uncertainties
- ❖ Almost same for NFW, 2-3 times weaker for Burkert
- ❖ ~10 times weaker for MIN, 2-3 times stronger for MAX
- ❖ With the data of E<10 GeV including the solar modulation effect

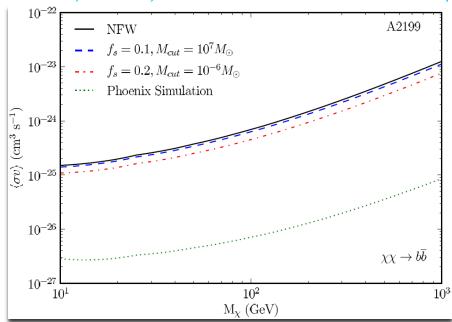
Indirect detection: radio I



Storm, Jeltema, Profumo & Rudnick arXiv:1210.0872

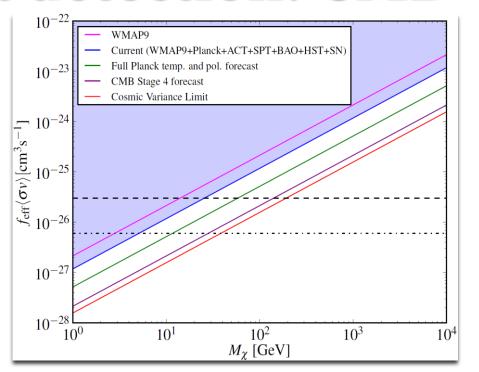

- ❖ Relativistic e⁻ & e⁺ lose E via synchrotron radiation → bounds on <σv> using limits on the diffuse radio emission from nearby galaxy clusters
- **❖** Smooth NFW profile for ∼ 10 galaxy clusters: comparable results for different clusters.
- ❖ Galactic center: similar limits. (arXiv:1002.0229)

Indirect detection: radio I



- ❖ Relativistic e⁻ & e⁺ lose E via synchrotron radiation → bounds on <σv> using limits on the diffuse radio emission from nearby galaxy clusters
- **❖** Smooth NFW profile for ∼ 10 galaxy clusters: comparable results for different clusters.
- ❖ Galactic center: similar limits. (arXiv:1002.0229)
- * M31 galaxy: stronger bound by a factor of 10 (3) than A2199 for the bb $(\tau^+\tau^-)$ channel.

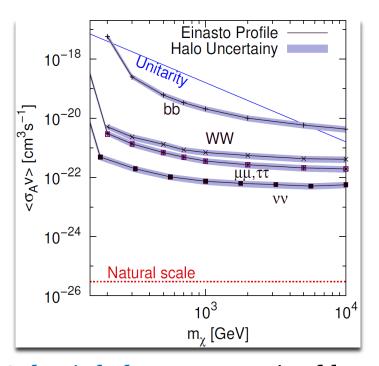
Indirect detection: radio II


Storm, Jeltema, Profumo & Rudnick arXiv:1210.0872

- ❖ Effects of uncertainty in the cluster M & B → a factor of ~2
- Clusters host various subhalos → radio emission limits on <ov> strongly depend
 on the assumed amount of cluster substructure
- Phoenix Project: a series of DM simulations of different galaxy clusters

following the evolution of cluster-sized halos (arXiv:1201.1940)

Indirect detection: CMB



Madhavacheril, Sehgal & Slatyer, arXiv:1310.3815

- DM annihilations into SM particles → injecting E into the plasma →
 affecting recombination & reionization → modifications in the CMB
- * Efficiency factor f_{eff} : the fraction of the injected E by DM annihilations which is deposited in the plasma. Varying with SM particles.

Indirect detection: neutrino

IceCube, arXiv:1101.3349

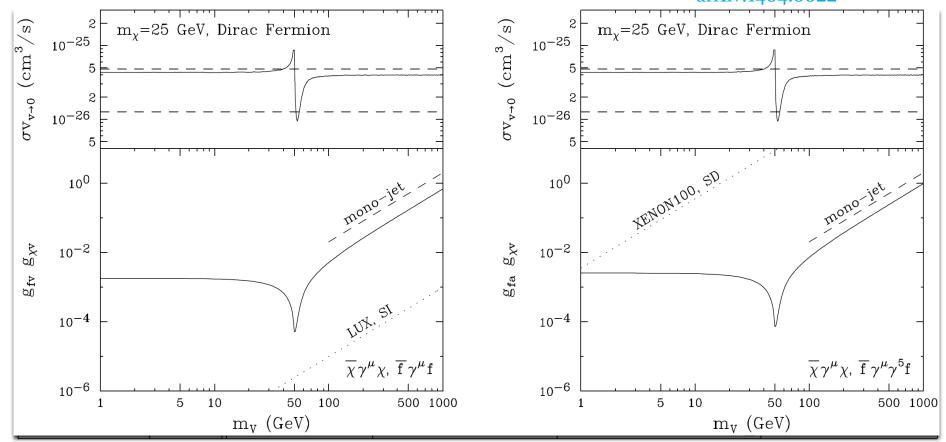
- ❖ DM annihilations in Galactic halo are constrained by IceCube v measurements
- * But weak and only applicable for $m_{DM} > O(100)$ GeV
- ❖ Capture & subsequent annihilations of DM in the sun would induce v fluxes
 - \rightarrow bounds from Super-K & IceCube \rightarrow highly model-dependent: σ^{anni} , $\sigma^{\chi N}$, $\sigma^{\chi \chi}$

Outline

- > DM indirect searches
 - \rightarrow GeV γ -rays from the Galactic center
- > Constraints:
 - ✓ Indirect detections
 - ✓ Direct detections
 - ✓ Colliders
- > Conclusion

Direct detection I

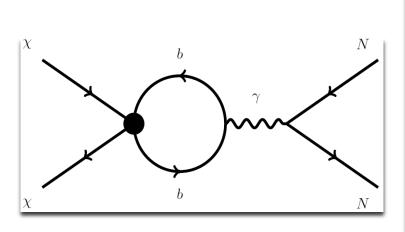
Berlin, Hooper & McDermott, arXiv:1404.0022

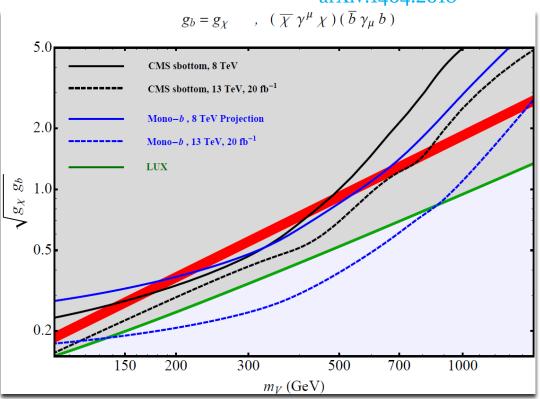

				<u> </u>	
DM bilinear	SM fermion bilinear				
$fermion\ DM$	$\bar{f}f$	$ar{f}\gamma^5 f$	$ar{f}\gamma^{\mu}f$	$ar{f}\gamma^{\mu}\gamma^{5}f$	
$\bar{\chi}\chi$	$\sigma v \sim v^2, \sigma_{\rm SI} \sim 1$	$\sigma v \sim v^2, \sigma_{\rm SD} \sim q^2$	_	_	
$\bar{\chi}\gamma^5\chi$	$\sigma v \sim 1, \sigma_{ m SI} \sim q^2$	$\sigma v \sim 1, \sigma_{ m SD} \sim q^4$	_	_	
$\bar{\chi}\gamma^{\mu}\chi$ (Dirac only)	_	_	$\sigma v \sim 1, \sigma_{\rm SI} \sim 1$	$\sigma v \sim 1, \sigma_{ m SD} \sim v_{\perp}^2$	
$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi$	_	_	$\sigma v \sim v^2, \sigma_{\rm SI} \sim v_\perp^2$	$\sigma v \sim 1, \sigma_{ m SD} \sim 1$	

$DM\ bilinear$	$SM\ fermion\ bilinear$				
scalar~DM	$\bar{f}f$	$ar{f}\gamma^5 f$	$ar{f}\gamma^{\mu}f$	$ar{f}\gamma^{\mu}\gamma^{5}f$	
$\phi^\dagger \phi$	$\sigma v \sim 1, \sigma_{\rm SI} \sim 1$	$\sigma v \sim 1, \sigma_{ m SD} \sim q^2$	_	_	
$\phi^{\dagger} \overleftrightarrow{\partial_{\mu}} \phi \text{ (complex only)}$	_	_	$\sigma v \sim v^2, \sigma_{\rm SI} \sim 1$	$\sigma v \sim v^2, \sigma_{\rm SD} \sim v_\perp^2$	
$vector\ DM$	$\bar{f}f$	$ar{f}\gamma^5 f$	$ar{f}\gamma^{\mu}f$	$ar{f}\gamma^{\mu}\gamma^{5}f$	
$X^{\mu}X^{\dagger}_{\mu}$	$\sigma v \sim 1, \ \sigma_{\rm SI} \sim 1$	$\sigma v \sim 1, \sigma_{ m SD} \sim q^2$	_	_	
$X^{ u}\partial_{ u}X^{\dagger}_{\mu}$	_	_	$\sigma v \sim v^2, \sigma_{\rm SI} \sim q^2 \cdot v_\perp^2$	$\sigma v \sim v^2, \sigma_{\rm SD} \sim q^2$	

- ❖ Model-dependent
- Stringent limits for only a few interactions

Direct detection I


Berlin, Hooper & McDermott, arXiv:1404.0022



- * Model-dependent
- Stringent limits for only a few interactions

Direct detection II

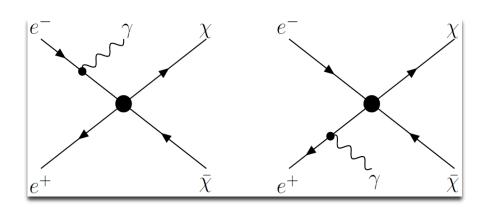
Izaguirre, Krnjaic & Shuve, arXiv:1404.2018

- ❖ Couplings to only b-quarks → weaker limit due to small heavy quark contribution
- ❖ But, b-loop induced scattering through a photon → still strong bounds

Outline

- > DM indirect searches
 - \rightarrow GeV γ -rays from the Galactic center
- > Constraints:
 - ✓ Indirect detections
 - ✓ Direct detections
 - ✓ Colliders
- > Conclusion

Collider: LEP & ILC I


$$\mathcal{O}_{V} = \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{\ell}\gamma^{\mu}\ell)}{\Lambda^{2}},$$

$$\mathcal{O}_{S} = \frac{(\bar{\chi}\chi)(\bar{\ell}\ell)}{\Lambda^{2}},$$

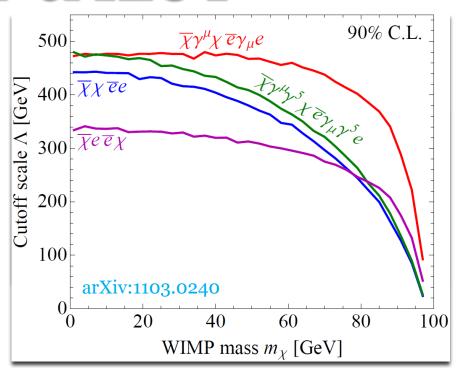
$$\mathcal{O}_{A} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)}{\Lambda^{2}},$$

$$\mathcal{O}_{t} = \frac{(\bar{\chi}\ell)(\bar{\ell}\chi)}{\Lambda^{2}},$$

$$\mathcal{O}_{PS} = \frac{(\bar{\chi}\gamma_{5}\chi)(\bar{\ell}\gamma_{5}\ell)}{\Lambda^{2}}$$

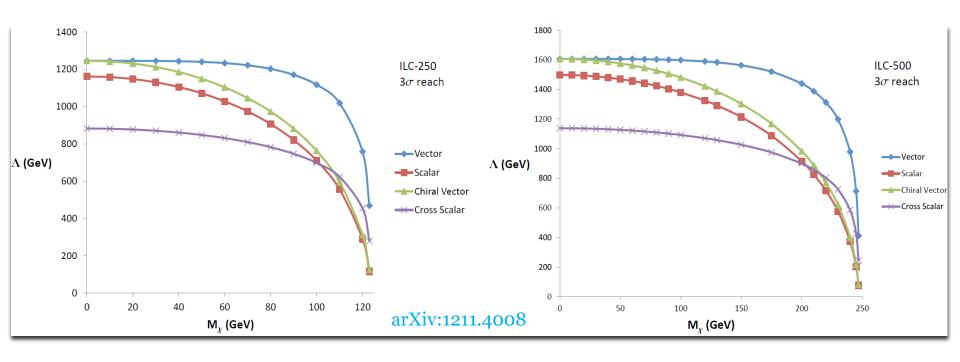
- ❖ LEP(ILC): mono- γ +E_T → limits on O_i → Compute $\langle \sigma v \rangle_{\chi\chi \to ee}$ using micrOMEGAs
- ❖ For illustration, we choose O_V. (O_S & O_A: suppressed s-wave)
- O_t : better by a factor of ~2. O_{PS} : weaker by a factor of ~4 (arXiv:1211.2254)
- LEP constrains parameter space for e-channel significantly, but still OK.

Collider: LEP & ILC I

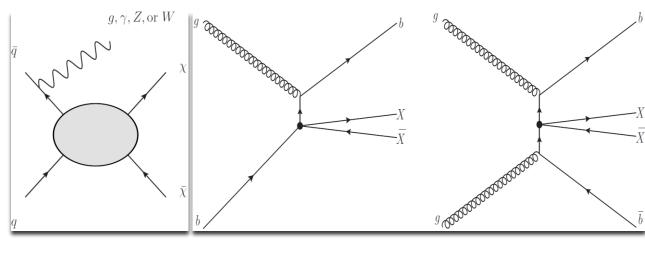

$$\mathcal{O}_{V} = \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{\ell}\gamma^{\mu}\ell)}{\Lambda^{2}},$$

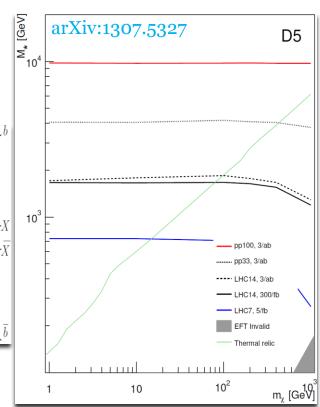
$$\mathcal{O}_{S} = \frac{(\bar{\chi}\chi)(\bar{\ell}\ell)}{\Lambda^{2}},$$

$$\mathcal{O}_{A} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)}{\Lambda^{2}},$$


$$\mathcal{O}_{t} = \frac{(\bar{\chi}\ell)(\bar{\ell}\chi)}{\Lambda^{2}},$$

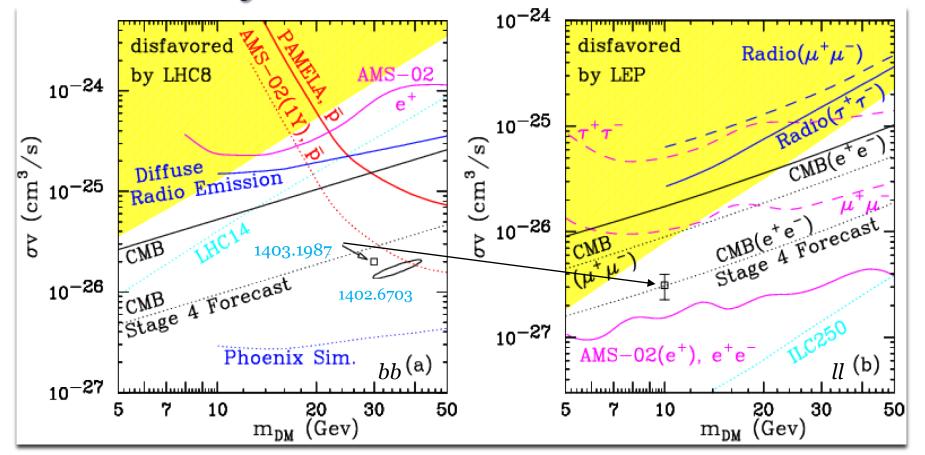
$$\mathcal{O}_{PS} = \frac{(\bar{\chi}\gamma_{5}\chi)(\bar{\ell}\gamma_{5}\ell)}{\Lambda^{2}}$$


- ❖ LEP(ILC): mono- γ +E_T → limits on O_i → Compute $\langle \sigma v \rangle_{\chi\chi \to ee}$ using micrOMEGAs
- ❖ For illustration, we choose O_V. (O_S & O_A: suppressed s-wave)
- O_t : better by a factor of ~2. O_{PS} : weaker by a factor of ~4 (arXiv:1211.2254)
- LEP constrains parameter space for e-channel significantly, but still OK.


Collider: LEP & ILC II

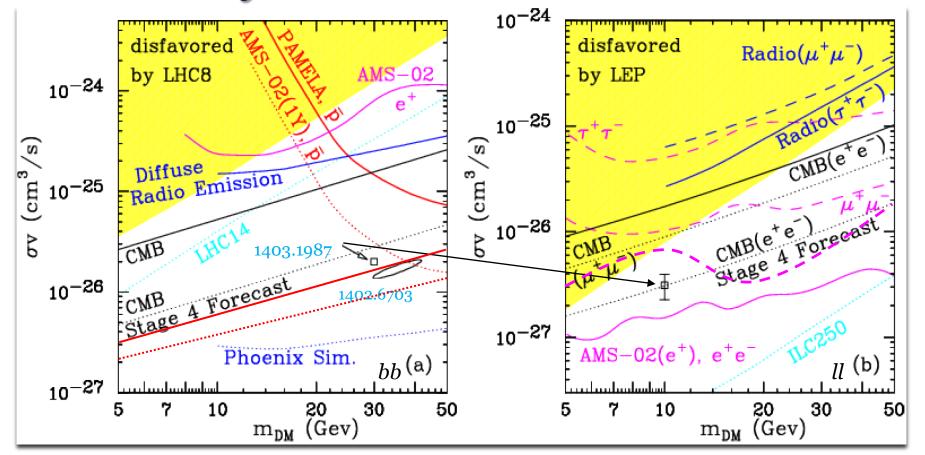
- * ILC(250 GeV & 250 fb⁻¹): 2.5-3 higher $\Lambda \rightarrow O(10^{1-2})$ improved limits on $\langle \sigma v \rangle_{\chi\chi \rightarrow ee}$
- ❖ ILC(500 GeV & 500 fb⁻¹): a factor of ~4 improvement

Collider: LHC

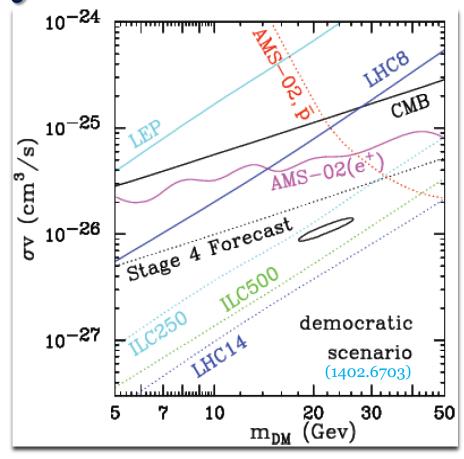


- * mono-j+ $E_T \rightarrow$ powerful limits.
- ❖ b, t-quarks flavored DM: mono-b+E_T becomes more effective.
- * Using CMS data and results of 1307.5327 & 1303.6638 \rightarrow limits on $O_i \rightarrow$ Compute $<\sigma v>_{\chi\chi \rightarrow bb}$ using micrOMEGAs
- ❖ LHC14: projected limits at 95% CL with 100 fb⁻¹

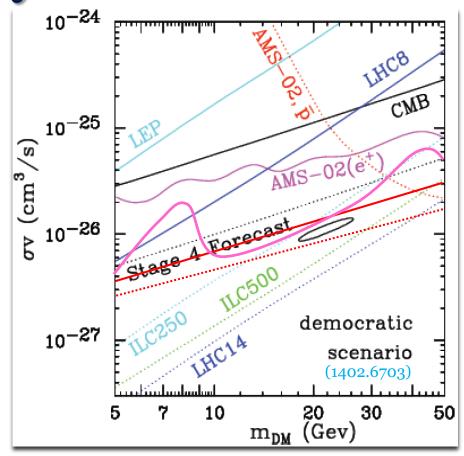
Summary of constraints I


K.C. Kong & JCP, arXiv:1404.3741

- Limits on <σv>_{χχ→XX}: e⁺&anti-p fluxes, diffuse radio, CMB, colliders. (Dotted: projected sensitivities)
- ❖ A rescaling factor of 1/3 is taken into account for democratic annihilations into leptons in (b)
 - \rightarrow The same $\langle \sigma v \rangle$ is applied to each leptonic channels.


Summary of constraints I

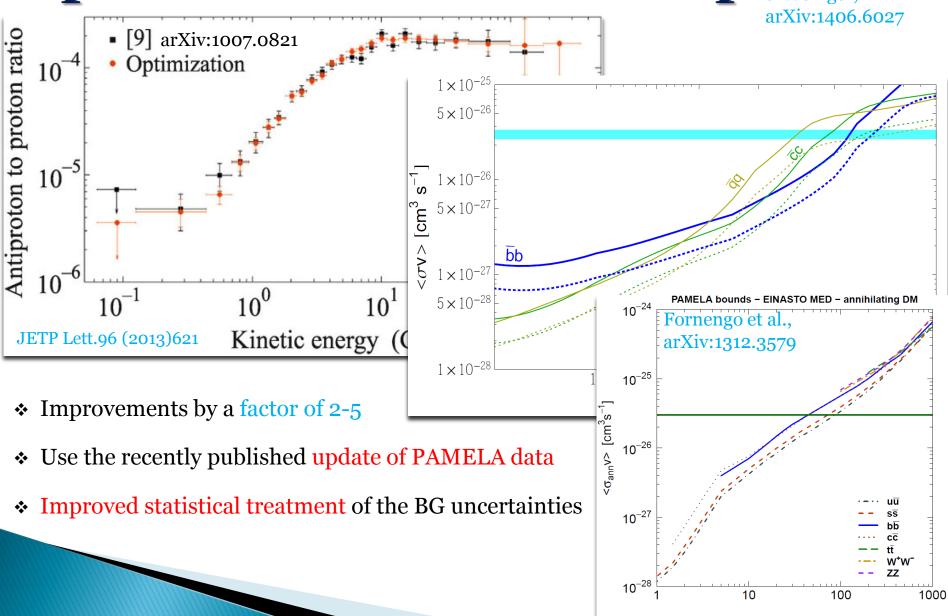
K.C. Kong & JCP, arXiv:1404.3741


- Limits on <σv>_{χχ→XX}: e⁺&anti-p fluxes, diffuse radio, CMB, colliders. (Dotted: projected sensitivities)
- ❖ A rescaling factor of 1/3 is taken into account for democratic annihilations into leptons in (b)
 - \rightarrow The same $\langle \sigma v \rangle$ is applied to each leptonic channels.

Summary of constraints II

- * All kinematically accessible SM fermions, l:v:q=1:1:5
 - → Each bound is rescaled by the corresponding annihilation fraction.

Summary of constraints II



- * All kinematically accessible SM fermions, l:v:q=1:1:5
 - → Each bound is rescaled by the corresponding annihilation fraction.

Updated limits from anti-p

Bringmann, Vollmann & Weniger,

m_{DM} [GeV]

Outline

- > DM indirect searches
 - \rightarrow GeV γ -rays from the Galactic center
- > Constraints:
 - ✓ Indirect detections
 - ✓ Direct detections
 - ✓ Colliders
- > Conclusion

Conclusion

- > GeV γ-ray excess around the GC from the Fermi-LAT data
- > $<\sigma v>_{bb}=(1-2)\cdot 10^{-26} \text{ cm}^3/\text{s for m}_{DM}=30-40 \text{ GeV},$ $<\sigma v>_{ll}=(0.6-1.2)\cdot 10^{-26} \text{ cm}^3/\text{s for m}_{DM}=10 \text{ GeV}$
- > Constrains from PAMELA, AMS-02, CMB, IceCube, LEP, LHC, ...
 - \rightarrow favor DM couplings to (2nd) 3rd generation of SM fermions (l-l+).
 - :lepton channels: e+ & LEP, quark channels: anti-p, LHC & LUX
- > Near future: AMS-02 (anti-p), LHC14
 - Far future: ILC, CMB, ...

Thank you